Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 185(1): 196-209, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631809

RESUMO

Legumes play an important role in the soil nitrogen availability via symbiotic nitrogen fixation (SNF). Phosphate (Pi) deficiency severely impacts SNF because of the high Pi requirement of symbiosis. Whereas PHT1 transporters are involved in Pi uptake into nodules, it is unknown how Pi is transferred from the plant infected cells to nitrogen-fixing bacteroids. We hypothesized that Medicago truncatula genes homologous to Arabidopsis PHO1, encoding a vascular apoplastic Pi exporter, are involved in Pi transfer to bacteroids. Among the seven MtPHO1 genes present in M. truncatula, we found that two genes, namely MtPHO1.1 and MtPHO1.2, were broadly expressed across the various nodule zones in addition to the root vascular system. Expressions of MtPHO1.1 and MtPHO1.2 in Nicotiana benthamiana mediated specific Pi export. Plants with nodule-specific downregulation of both MtPHO1.1 and MtPHO1.2 were generated by RNA interference (RNAi) to examine their roles in nodule Pi homeostasis. Nodules of RNAi plants had lower Pi content and a three-fold reduction in SNF, resulting in reduced shoot growth. Whereas the rate of 33Pi uptake into nodules of RNAi plants was similar to control, transfer of 33Pi from nodule cells into bacteroids was reduced and bacteroids activated their Pi-deficiency response. Our results implicate plant MtPHO1 genes in bacteroid Pi homeostasis and SNF via the transfer of Pi from nodule infected cells to bacteroids.


Assuntos
Medicago truncatula/genética , Fixação de Nitrogênio/fisiologia , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/fisiologia , Nódulos Radiculares de Plantas/fisiologia , Sinorhizobium meliloti/fisiologia , Simbiose/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/genética , Simbiose/genética
2.
Plant Cell ; 32(2): 486-507, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31757927

RESUMO

Nitrogen (N) limits crop yield, and improvement of N nutrition remains a key goal for crop research; one approach to improve N nutrition is identifying plant-interacting, N2-fixing microbes. Rhodotorula mucilaginosa JGTA-S1 is a basidiomycetous yeast endophyte of narrowleaf cattail (Typha angustifolia). JGTA-S1 could not convert nitrate or nitrite to ammonium but harbors diazotrophic (N2-fixing) endobacteria (Pseudomonas stutzeri) that allow JGTA-S1 to fix N2 and grow in a N-free environment; moreover, P. stutzeri dinitrogen reductase was transcribed in JGTA-S1 even under adequate N. Endobacteria-deficient JGTA-S1 had reduced fitness, which was restored by reintroducing P. stutzeri JGTA-S1 colonizes rice (Oryza sativa), significantly improving its growth, N content, and relative N-use efficiency. Endofungal P. stutzeri plays a significant role in increasing the biomass and ammonium content of rice treated with JGTA-S1; also, JGTA-S1 has better N2-fixing ability than free-living P. stutzeri and provides fixed N to the plant. Genes involved in N metabolism, N transporters, and NODULE INCEPTION-like transcription factors were upregulated in rice roots within 24 h of JGTA-S1 treatment. In association with rice, JGTA-S1 has a filamentous phase and P. stutzeri only penetrated filamentous JGTA-S1. Together, these results demonstrate an interkingdom interaction that improves rice N nutrition.


Assuntos
Bactérias/metabolismo , Basidiomycota/metabolismo , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Oryza/metabolismo , Oryza/microbiologia , Rhodotorula/metabolismo , Compostos de Amônio , Basidiomycota/crescimento & desenvolvimento , Endófitos/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Pseudomonas/metabolismo , Pseudomonas stutzeri/metabolismo , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/isolamento & purificação , Simbiose , Transcriptoma
3.
Front Microbiol ; 9: 1155, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29910787

RESUMO

Phosphobacteria, secreting organic acids and phosphatases, usually favor plant performance in acidic soils by increasing phosphorus (P) availability and aluminum (Al) complexing. However, it is not well-known how P-deficiency and Al-toxicity affect the phosphobacteria physiology. Since P and Al problems often co-occur in acidic soils, we have therefore proposed the evaluation of the single and combined effects of P-deficiency and Al-toxicity on growth, organic acids secretion, malate dehydrogenase (mdh) gene expression, and phosphatase activity of five Al-tolerant phosphobacteria previously isolated from ryegrass. These phosphobacteria were identified as Klebsiella sp. RC3, Stenotrophomona sp. RC5, Klebsiella sp. RCJ4, Serratia sp. RCJ6, and Enterobacter sp. RJAL6. The strains were cultivated in mineral media modified to obtain (i) high P in absence of Al-toxicity, (ii) high P in presence of Al-toxicity, (iii) low P in absence of Al-toxicity, and (iv) low P in presence of Al-toxicity. High and low P were obtained by adding KH2PO4 at final concentration of 1.4 and 0.05 mM, respectively. To avoid Al precipitation, AlCl3 × 6H2O was previously complexed to citric acid (sole carbon source) in concentrations of 10 mM. The secreted organic acids were identified and quantified by HPLC, relative mdh gene expression was determined by qRT-PCR and phosphatase activity was colorimetrically determined using p-nitrophenyl phosphate as substrate. Our results revealed that although a higher secretion of all organic acids was achieved under P-deficiency, the patterns of organic acids secretion were variable and dependent on treatment and strain. The organic acid secretion is exacerbated when Al was added into media, particularly in the form of malic and citric acid. The mdh gene expression was significantly up-regulated by the strains RC3, RC5, and RCJ6 under P-deficiency and Al-toxicity. In general, Al-tolerant phosphobacteria under P deficiency increased both acid and alkaline phosphatase activity with respect to the control, which was deepened when Al was present. The knowledge of this bacterial behavior in vitro is important to understand and predict the behavior of phosphobacteria in vivo. This knowledge is essential to generate smart and efficient biofertilizers, based in Al-tolerant phosphobacteria which could be expansively used in acidic soils.

4.
J Plant Physiol ; 191: 73-81, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26720212

RESUMO

Nitrogen fixing legumes rely on phosphorus for nodule formation, nodule function and the energy costs of fixation. Phosphorus is however very limited in soils, especially in ancient sandstone-derived soils such as those in the Cape Floristic Region of South Africa. Plants growing in such areas have evolved the ability to tolerate phosphorus stress by eliciting an array of physiological and biochemical responses. In this study we investigated the effects of phosphorus limitation on N2 fixation and phosphorus recycling in the nodules of Virgilia divaricata (Adamson), a legume native to the Cape Floristic Region. In particular, we focused on nutrient acquisition efficiencies, phosphorus fractions and the exudation and accumulation of phosphatases. Our finding indicate that during low phosphorus supply, V. divaricata internally recycles phosphorus and has a lower uptake rate of phosphorus, as well as lower levels adenylates but greater levels of phosphohydrolase exudation suggesting it engages in recycling internal nodule phosphorus pools and making use of alternate bypass routes in order to conserve phosphorus.


Assuntos
Fabaceae/metabolismo , Fósforo/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Solo/química , Fosfatase Ácida/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Biomassa , Espectroscopia de Ressonância Magnética , Metaboloma , Minerais/metabolismo , Fixação de Nitrogênio , Monoéster Fosfórico Hidrolases/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Uridina Difosfato Glucose/metabolismo
5.
Funct Plant Biol ; 43(3): 287-297, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32480461

RESUMO

Virgilia divaricata Adamson is a forest margin legume that is known to invade the N- and P-poor soils of the mature fynbos, implying that it tolerates variable soil N and P levels. It is not known how the legume uses inorganic N from soil and atmospheric sources under variable P supply. Little is known about how P deficiency affects the root nodule metabolic functioning of V. divaricata and the associated energy costs of N assimilation. This study aimed to determine whether P deficiency affects the metabolic status of roots and nodules, and the impact on the routes of N assimilation in V. divaricata.V. divaricata had reduced biomass, plant P concentration and biological nitrogen fixation during P deficiency. Based on adenylate data, P-stressed nodules maintained their P status better than P-stressed roots. V. divaricata was able to alter C and N metabolism differently in roots and nodules under P stress. This was achieved via internal P cycling by possible replacement of membrane phospholipids with sulfolipids and galactolipids, and increased reliance on the pyrophosphate (PPi)-dependent metabolism of sucrose via UDP-glucose (UDPG) and to fructose-6-phosphate (Fru-6-P). P-stressed roots mostly exported ureides as organic N and recycled amino acids via deaminating glutamate dehydrogenase. In contrast, P-stressed nodules largely exported amino acids. Compared with roots, nodules showed more P conservation during low P supply. The roots and nodules of V. divaricata metabolised N differently during P stress, meaning that these organs may contribute differently to the success of this plant in soils from forest to fynbos.

6.
J Plant Physiol ; 168(5): 459-65, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20926158

RESUMO

The role of phosphorus (P) status in root-zone CO(2) utilisation for organic acid synthesis during Al(3+) toxicity was assessed. Root-zone CO(2) can be incorporated into organic acids via Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31). P-deficiency and Al(3+) toxicity can induce organic acid synthesis, but it is unknown how P status affects the utilisation of PEPC-derived organic acids during Al(3+) toxicity. Two-week-old Solanum lycopersicum seedlings were transferred to hydroponic culture for 3 weeks. The hydroponic culture consisted of a standard Long Ashton nutrient solution containing either 0.1µM or 1mM P. Short-term Al(3+) toxicity was induced by a 60-min exposure to a pH-buffered solution (pH 4.5) containing 2mM CaSO(4) and 50µM AlCl(3). Al(3+) toxicity induced a decline in root respiration, adenylate concentrations and an increase in root-zone CO(2) utilisation for both P sufficient and P-deficient plants. However during Al(3+) toxicity, P deficiency enhanced the incorporation and metabolism of root-zone CO(2) via PEPC. Moreover, P deficiency led to a greater proportion of the PEPC-derived organic acids to be exuded during Al(3+) toxicity. These results indicate that P-status can influence the response to Al(3+) by inducing a greater utilisation of PEPC-derived organic acids for Al(3+) detoxification.


Assuntos
Alumínio/toxicidade , Dióxido de Carbono/metabolismo , Fósforo/deficiência , Raízes de Plantas/metabolismo , Biomassa , Solanum lycopersicum/metabolismo
7.
Plant Cell Environ ; 33(6): 1005-15, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20132522

RESUMO

The role of rhizosphere yeasts as plant nutrient-scavenging microsymbionts in resource-limited Mediterranean-type heathlands is unknown. This study, therefore, focused on quantitative elemental distribution within the roots of a medicinal sclerophyll, Agathosma betulina (Berg.) Pillans, grown under nutrient-poor conditions, and colonized by Cryptococcus laurentii. Micro-particle-induced X-ray emission (PIXE) was used to assess quantitative elemental distribution within the roots of A. betulina inoculated with viable C. laurentii, as well as within roots of control plants that received autoclaved yeast. To aid in the interpretation of heterogeneous elemental distribution patterns, apoplastic barriers (Casparian bands) in root tissues were located using fluorescence microscopy. In addition, root cross-sections were examined for endophytic C. laurentii using light and transmission electron microscopy (TEM). The average concentrations of P, Fe and Mn were significantly (P < 0.05) higher in roots of yeast-inoculated plants, compared to control plants. Casparian bands were observed in the exodermal cells of both treatments, and the presence of these bands was correlated with elemental enrichment in the epi/exodermal-outer cortical tissues. Light and TEM micrographs revealed that the yeast was not a root endophyte. This is the first report describing the role of a soil yeast as a plant nutrient-scavenging microsymbiont.


Assuntos
Cryptococcus/crescimento & desenvolvimento , Elementos Químicos , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rutaceae/citologia , Rutaceae/microbiologia , Espectrometria por Raios X , Contagem de Colônia Microbiana , Região do Mediterrâneo , Microscopia , Raízes de Plantas/citologia
8.
Biochem J ; 420(1): 57-65, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19228119

RESUMO

PEPC [PEP(phosphoenolpyruvate) carboxylase] is a tightly controlled cytosolic enzyme situated at a major branchpoint in plant metabolism. Accumulating evidence indicates important functions for PEPC and PPCK (PEPC kinase) in plant acclimation to nutritional P(i) deprivation. However, little is known about the genetic origin or phosphorylation status of native PEPCs from -P(i) (P(i)-deficient) plants. The transfer of Arabidopsis suspension cells or seedlings to -P(i) growth media resulted in: (i) the marked transcriptional upregulation of genes encoding the PEPC isoenzyme AtPPC1 (Arabidopsis thaliana PEPC1), and PPCK isoenzymes AtPPCK1 and AtPPCK2; (ii) >2-fold increases in PEPC specific activity and in the amount of an immunoreactive 107-kDa PEPC polypeptide (p107); and (iii) In vivo p107 phosphorylation as revealed by immunoblotting of clarified extracts with phosphosite-specific antibodies to Ser-11 (which could be reversed following P(i) resupply). Approx. 1.3 mg of PEPC was purified 660-fold from -P(i) suspension cells to apparent homogeneity with a specific activity of 22.3 units x mg(-1) of protein. Gel filtration, SDS/PAGE and immunoblotting demonstrated that purified PEPC exists as a 440-kDa homotetramer composed of identical p107 subunits. Sequencing of p107 tryptic and Asp-N peptides by tandem MS established that this PEPC is encoded by AtPPC1. P(i)-affinity PAGE coupled with immunoblotting indicated stoichiometric phosphorylation of the p107 subunits of AtPPC1 at its conserved Ser-11 phosphorylation site. Phosphorylation activated AtPPC1 at pH 7.3 by lowering its Km(PEP) and its sensitivity to inhibition by L-malate and L-aspartate, while enhancing activation by glucose 6-phosphate. Our results indicate that the simultaneous induction and In vivo phosphorylation activation of AtPPC1 contribute to the metabolic adaptations of -P(i) Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fosfatos/deficiência , Fosfoenolpiruvato Carboxilase/metabolismo , Adaptação Fisiológica , Ácido Aspártico/farmacologia , Glucose-6-Fosfato/farmacologia , Malatos/farmacologia , Fosforilação , Ativação Transcricional
9.
Microb Ecol ; 57(4): 624-32, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18958514

RESUMO

The interaction between a common soil yeast, Cryptococcus laurentii, and a slow-growing medicinal plant adapted to low-nutrient soils, Agathosma betulina (Berg.) Pillans, was studied. C. laurentii CAB 578 was isolated from the rhizosphere of wild A. betulina, and liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis revealed that the yeast was capable of producing polyamines, such as cadaverine and spermine, while growing in vitro in a chemically defined medium. Since the exogenous application of polyamines are known to impact on root growth, these findings supported the results obtained when axenic cultures of A. betulina seedlings were inoculated with C. laurentii CAB 578 and cultivated for 5 months under glasshouse conditions. The presence of the yeast increased root growth by 51%. Using soil dilution plates, it was demonstrated that yeast numbers were greater in the vicinity of the roots than in the bulk soil. In addition, fluoromicroscopy, in combination with the fluorescent probes Fungolight and Calcofluor white, revealed the presence of metabolic active yeast colonies on the rhizoplane 5 months after initiation of the experimentation. The study provided evidence for a symbiosis between C. laurentii and A. betulina.


Assuntos
Cryptococcus/crescimento & desenvolvimento , Rutaceae/microbiologia , Microbiologia do Solo , Simbiose , Cryptococcus/genética , Cryptococcus/isolamento & purificação , Cryptococcus/metabolismo , DNA Fúngico/genética , DNA Espaçador Ribossômico , Raízes de Plantas/microbiologia , Poliaminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...